
The ABL Keeps Getting Better

What’s New in the ABL – 11.4 & 11.5

Phillip Molly Malone

Principal Technical Support Engineer

@mollyfud

#APJSpark

Agenda

 11.4

• OOABL serialization

• FINALLY block

• GET-CLASS

• JSON Before-Image Support

• 64-bit WebClient

 11.5

• ABL widget enhancements

• Additional CAN-DO functionality

• Coexistent installation of 32-bit and 64-bit OpenEdge

11.4

Object Serialization – Motivation

Problem

• There is no standard way to get error information from the AppServer to

a client

• There is no way to pass OOABL objects between an ABL client and an

AppServer

Solution

Introduce built-in OOABL object serialization

• Works between an ABL client and an AppServer

– Not Open Client

Object Serialization in the ABL

 Use Cases

• Throwing an error object from the AppServer to an ABL client

• Passing an object between an ABL client and an AppServer

• Passing temp tables that contain ABL object fields between an ABL client

and an AppServer

 Rules for serialization and deserialization

 Futures Roadmap

ABL Client
Server

Throwing an Error Object – 11.4

RETURN ERROR New Progress.Lang.AppError(…).

ROUTINE-LEVEL ON ERROR UNDO, THROW.

CATCH err AS Progress.Lang.Error:

UNDO, THROW err.

END.

ABL Client
Server

Throwing an Error Object

Pre - 11.4

 Raises ERROR on client

 Object instance returned

 Error message and all other object

data available on the client

11.4

 Raises ERROR on client

 Generated warning in the AppServer

log file

 No object instance returned

 Not even error message available on

the client

What Objects Can You Throw?

 Classes which implement Progress.Lang.Error, for example,

• Progress.Lang.SysError

• Progress.Lang.AppError

• Progress.Lang.JsonError

• Progress.BPM.BPMError

• Any user-defined class that implements Progress.Lang.Error

– Typically subclass of Progress.Lang.AppError

– Must be marked SERIALIZABLE

 Not .NET Exceptions

Error Object – CallStack

 Error objects can contain Callstack information

• SESSION:ERROR-STACK-TRACE attribute to TRUE

• -errorstack startup parameter

 Callstack augmented with info from both client and AppServer call stacks

getCust.p at line 20 (c:\OO\getCust.p)

runit.p at line 2 (c:\OO\runit.p)

Server StackTrace:

serverCust.p at line 8 (./serverCust.p)

RUN serverCust.p ON

SERVER hSrvr.

Passing Objects between Client and
Appserver

Server ABL Client

OO ABL Serialization

 How objects get passed between a client and an AppServer

 What objects can be serialized?

 Compatibility between client & server

 Serialization rules

 Deserialization rules

ABL Client
Server

Passing OOABL Objects

 Parameters

 Return Values

RUN proc.p ON SERVER hsrv (INPUT myCustInfo).

DEFINE VAR myCustInfo AS CustInfo.

FUNCTION getData RETURNS CustInfo () IN hRemoteProc.

…

RUN CustServices.p ON SERVER hsrv SET hRemoteProc.

…

myCustInfo = getData().

Passing Remote Temp-tables Containing ABL Object Fields

 Restriction lifted

• Pass temp-table to AppServer if it contains an OOABL object

• Field is still defined as Progress.Lang.Object

 TT can contain object instance, which can contain TT…

ABL Client Server
tt1

plo1

plo2

SERIALIZABLE

 Indicates objects of the class can be passed between an AppServer and a

remote client

 Every class in hierarchy must be marked SERIALIZABLE

 Cannot be used with ABL-extended .NET classes

CLASS CustInfo INHERITS Info SERIALIZABLE:

 ...

END.

SERIALIZABLE – PDSOE

Serializable Built-in OOABL Objects

 Serializable

• Classes that implement Progress.Lang.Error

• Progress.Json.ObjectModel.JsonObject

• Progress.Json.ObjectModel.JsonArray

• Progress.Json.ObjectModel.ObjectModelParser

– Any built-in sub-class of any of these

• Progress.Lang.Object

 Not serializable – everything else, for example:

• Progress.Security.DB.Policy

• Progress.Database.TempTableInfo

• Progress.BPM.DataSlot

• Progress.Lang.Class

Update to Object Reflection

 IsSerializable method of Progress.Lang.Class

• Indicates whether the object is SERIALIZABLE

• Use at run-time or for tooling

DEFINE VAR cls AS Progress.Lang.Class

cls = Progress.Lang.Class:GetClass(“CustInfo”).

MESSAGE cls:IsSerializable() VIEW-AS ALERT-BOX.

Update to COMPILE XREF, COMPILE XREF-XML

<Class-ref>

 <Source-guid>t6BMga8eOYXVE8DcTJMLng</Source-guid>

 <Ref-seq>4</Ref-seq>

 <Inherited-list/>

 …

 <Is-final>true</Is-final>

 <Is-serializable>true</Is-serializable>

Version Compatibility

 Both sides must be at least 11.4

• 11.4 client -> older AppServer

– Parameter passing errors

• 11.4 AppServer -> older client

– OOABL error object not thrown

– Parameter passing errors

Version Compatibility – VersionInfo Class

Serialization Model

 Pass by value

• Receiving side creates new object instance

• Either instance may get garbage collected

ABL Client
Server

Compatibility: Class Definitions

 Class definitions on Client and

AppServer must be the “same”

• Method signature and data members must

match exactly

 What if they are different?

• An error is raised on the RUN statement

 AVM does not check if the business

logic matches

• Constructor, method or property getter/setter

code can be different

• API the same, r-code is different

Class A

Property A1

Variable A2

Class A

Property A1

Variable A2

=

What Gets Serialized?

 All instance data members are serialized
• Variables

• Properties

• ProDataSets

• Temp-tables

 All access modes
• Public, Protected, Private

 Static data members are NOT serialized

 Property getters
• Not invoked

• Value is copied

Serialization Rules – Special Cases

 MEMPTRs
• Serialize if allocated by the ABL application

• Not serialized if allocated from external sources

– DLL or shared library

– Set to Unknown when the object is deserialized

 Handle-based variables (e.g., widgets, queries, buffers)
• Serialized with the handle value

• Widget/object referenced by the handle is not serialized

• Only useful to round-trip data

 Cannot serialize .NET or ABL-extended .NET objects
• AVM raises an error

Serialization Rules – State

 The AVM does not maintain state of class instance

• Open queries/cursor position

• Buffer contents

• Open files

• Streams

• Event subscriptions

Serialization Rules – Object Relationships

 Deep-copy

• Serialize data member object references

• Object graph is serialized

• Only 1 instance of Class D is serialized

Class A

Property myB

Property myC

Class B

Variable myD

Class C

Property myD

Class D

Temp-Tables and Object Fields

 Multiple references to one instance

• Instance uniqueness is maintained

• Only 1 instance of Class A is serialized

plo1

plo1

Class A

Circular References

 Circular references are detected and OK

• No infinite loop

Class B Class A

Class C

Deserialization Rules

 Creating the new instance

• Instance Constructor not invoked

• Property Setters not invoked

 Only the object’s data is deserialized

• R-code must already exist on both sides of

the wire

DynObjects Logging

 DynObjects logging includes objects created by deserialization

 Use LOG-ENTRY-TYPES: DynObjects.Class

[14/07/21@13:56:26.322-0400] P-008364 T-009896 3 AS DYNOBJECTS Created

 Progress.Lang.Object Handle:1000 (objParm.p @ 0) classA

RUN objParm.p ON hServer (INPUT NEW classA()).

Serialization of Character Data

 Character data serialized via sender’s –cpinternal

 Character data deserialized via receiver’s –cpinternal

 Longchar same rules apply except if:

• Codepage fixed with FIX-CODEPAGE

 Runtime error can be raised during conversion

ABL Client
Server

Character –cpinternal Character –cpinternal

Object Serialization – On the Roadmap

 Transient data (do not serialize)

 Provide object serialization to disk

• Binary format

• JSON

• XML

 Provide options to support “relaxed” levels of client/server matching:

• Exact match for public and protected members only

• Match by data members name & type

 Application defined (via callback)

DEFINE PUBLIC VARIABLE x AS INT.

DEFINE PUBLIC VARIABLE y AS INT.

DEFINE PUBLIC VARIABLE z AS INT.

DEFINE PUBLIC VARIABLE y AS INT.

DEFINE PUBLIC VARIABLE x AS INT.

DEFINE PUBLIC VARIABLE w AS INT.

Agenda

 OOABL serialization

 FINALLY block

 GET-CLASS

 JSON Before-Image Support

 64-bit WebClient

FINALLY Block – Motivation

Problem

Flow-of-control statements in a FINALLY block may conflict with associated block

Solution

We changed how the AVM handles flow-of-control statements in a FINALLY block

DO TRANSACTION:

 UNDO THROW myAppError.

END.

FINALLY:

 RETURN.

END.

FINALLY Block

 2nd line is new behavior in 11.4

 Best Practice: Avoid flow-of-control conflicts between

Associated block and FINALLY block

Associated Block

FINALLY block

Caller

Return 1

Return 2

2

Error 1 RETURN, NEXT, LEAVE, RETRY

Error 1

Agenda

 OOABL serialization

 FINALLY block

 GET-CLASS

 JSON Before-Image Support

 64-bit WebClient

GET-CLASS – Motivation

Problem – Prior to 11.4

• ABL supports Progress.Lang.Class:GetClass(<type-name-exp>)

• This does not provide compile time validation of type-name-exp

Solution

• Introduce GET-CLASS built-in function

• Accepts a type-name parameter

– not a character expression

GET-CLASS

 Syntax

 Returns a Progress.Lang.Class

 USING statements are applied to a non-qualified name

 Compiler error if not found

GET-CLASS(<type-name>).

Agenda

 OOABL serialization

 FINALLY block

 GET-CLASS

 JSON Before-Image Support

 64-bit WebClient

JSON – Before-Image – Motivation

Problem

• Lack of serialize / deserialize for a ProDataSet with before-image data to

JSON

• Out of step with XML support

• Mobile

Solution

• Optional before-image data in JSON for ProDataSets

JSON – Before-Image – Motivation

 You cannot reliably save ProDataSet changes to the DB w/o a before-

image

• You cannot know if another user has changed the data first.

 Mobile

• Original version – “built-in” method for update only handled 1 record at a

time.

– Application would have to do its own before-image caching and checking

• In 11.4 – Added ability to return a set of records in a ProDataSet.

– Requires reliable SAVE-ROW-CHANGES – need Before-image Information

 Offline support

• Make updates to a ProDataSet; Save to JSON since DB is unavailable

• Read back later when connected and do SAVE-ROW-CHANGES

JSON – Before-Image Syntax

 Syntax:

 Example:

 No change to READ-JSON syntax

WRITE-JSON (target-type , { file | stream | stream-handle | memptr | longchar }

 [, formatted [, encoding [, omit-initial-values

 [, omit-outer-object [, write-before-image]]]]])

DEFINE VARIABLE writeBI AS LOGICAL INIT YES.

DATASET dset:WRITE-JSON (“File”, “test.json”, YES, "UTF-8“, YES,

 NO, YES).

ProDataSet – JSON Output

After table (current state)

{"dsCustomer": {

 "prods:hasChanges": true,

 "ttCust": [

 {

 "prods:id": "ttCust10497",

 "prods:rowState": "modified",

 "CustNum": 2,

 "NAME": "Urpon Frisbee_NewName",

 "Balance": 903.64

 },

Before table

"prods:before": {

 "ttCust": [

 {

 "prods:id": "ttCust10497",

 "prods:rowState": "modified",

 "CustNum": 2,

 "NAME": "Urpon Frisbee",

 "Balance": 437.63

 },

Record marked as

“modified”

 …

 "prods:before": {

 "ttCust": [

 {

 "prods:id": "ttCust10520",

 "prods:rowState": "deleted",

 "prods:hasErrors": true,

 "CustNum": 3,

 "NAME": "Hoops",

 "Balance": 1199.95

 },

 …

 "prods:errors": {

 "ttCust": [

 {

 "prods:id": "ttCust10520",

 "prods:error" : "error-string“

 }, …

ProDataSet – Before Table May Also Indicate Row Error

Error associated with

this row

If row not deleted,

hasErrors would be

in after table instead

Agenda

 OOABL serialization

 FINALLY block

 GET-CLASS

 JSON Before-Image Support

 64-bit WebClient

WebClient – Windows 64-bit

Problem – Since 11.3

• Provided a 64-bit GUI client

• Missing functionality – no support for 64-bit WebClient

Solution

WebClient application can be defined as supporting

– 32-bit platform

– 64-bit platform

– Either, depending on target machine

WebClient – Windows 64-bit

 When your application gets deployed

• WebClient (i.e., the Progress AVM) is installed if not already there

• The app gets installed

– In general ABL code is not impacted by 32-bit vs. 64-bit

– If it is, it can/should be conditionalized to support both versions

– But the install is targeted for either 32-bit or 64-bit

o Notably – we need to know which AVM to run

 We support both 32-bit and 64-bit WebClient on the same machine

• 2 different applications, one 32-bit, one 64-bit

• Do NOT support this for the GUI client in 11.4

WebClient Application Assembler – General Tab

 On General tab, added
• Platform toggles

– 32-bit

– 64-bit

• Pick one or the other

• Pick both:

– Install will match the machine

configuration

 Will end up with 32-bit and 64-bit

AVM if:

• 64-bit machine

• Another 32-bit app already

installed

• Your app is installed as 64-bit

WebClient Application Assembler – Application Upgrade

 When you select both 32-bit &

64-bit

 You, the developer, decide the

upgrade path:

 • Continue to run the application as

32-bit

• Uninstall 32-bit version and install

64-bit version

• Ask the end-user: keep 32-bit or

upgrade to 64-bit

11.5

ABL widget enhancements

 Two new browse events

• SCROLL-VERTICAL

• SCROLL-HORIZONTAL

• SCROLL-NOTIFY

 New CLEAR() method for individual Fill-ins

• Works on individual fill-ins rather then all in a frame as CLEAR statement did

 -nocolon startup parameter suppress the appending of colons to static side labels

Additional CAN-DO functionality

 As part of OpenEdge's implementation of multi-tenancy, the CAN-DO function treats "@" as

the domain name delimiter in a fully qualified user ID by default and this was preventing

people from using the "@" symbol as a regular character

 This release provides two ways to treat the "@" symbol as a regular character

1. Use -nocandodomain startup parameter

2. Set CAN-DO-DOMAIN-SUPPORT attribute on the SECURITY-POLICY handle to FALSE

 For Example:

• When -nocandodomain is not in effect, the statement CAN-DO("abc","abc@") evaluates to TRUE

because both strings are interpreted as user abc in the blank domain

• When -nocandodomain is in effect, the statement CAN-DO("abc","abc@") evaluates to FALSE

Coexistent installation of 32-bit and 64-bit OpenEdge

 Start menus - Coexistent install

 Services - Coexistent Admin Servers only auto starts first Admin Server installed

 Control Panels > All Control Panels > Programs and Features - Coexistent listing

Sample ABL on same machine

32-bit - blue font 64-bit - black font

Your Feedback Matters

2 Winners get a GoPro Hero 4
Camera worth USD 399 each!

#APJSPARK

2 Winners get a Microsoft Band
worth USD 199 each!

Take 10 surveys and stand a
chance in the lucky draw!

bit.do/apjspark

Take 10 Surveys Best Tweets

